跳到主要内容

COPY INTO <table>

Introduced or updated: v1.2.704

COPY INTO 允许您从位于以下位置之一的文件中加载数据:

  • User / Internal / External stages: 请参阅 什么是 Stage? 以了解 Databend 中的 stages。
  • 在存储服务中创建的存储桶或容器。
  • 可以通过 URL 访问文件的远程服务器(以 "https://..." 开头)。
  • IPFS 和 Hugging Face 仓库。

另请参阅:COPY INTO <location>

语法

/* Standard data load */
COPY INTO [<database_name>.]<table_name> [ ( <col_name> [ , <col_name> ... ] ) ]
FROM { userStage | internalStage | externalStage | externalLocation }
[ FILES = ( '<file_name>' [ , '<file_name>' ] [ , ... ] ) ]
[ PATTERN = '<regex_pattern>' ]
[ FILE_FORMAT = (
FORMAT_NAME = '<your-custom-format>'
| TYPE = { CSV | TSV | NDJSON | PARQUET | ORC | AVRO } [ formatTypeOptions ]
) ]
[ copyOptions ]

/* Data load with transformation */
COPY INTO [<database_name>.]<table_name> [ ( <col_name> [ , <col_name> ... ] ) ]
FROM ( SELECT [<alias>.]$<file_col_num>[.<element>] [ , [<alias>.]$<file_col_num>[.<element>] ... ]
FROM { userStage | internalStage | externalStage } )
[ FILES = ( '<file_name>' [ , <file_name>' ] [ , ... ] ) ]
[ PATTERN = '<regex_pattern>' ]
[ FILE_FORMAT = (
FORMAT_NAME = '<your-custom-format>'
| TYPE = { CSV | TSV | NDJSON | PARQUET | ORC | AVRO } [ formatTypeOptions ]
) ]
[ copyOptions ]

其中:

userStage ::= @~[/<path>]

internalStage ::= @<internal_stage_name>[/<path>]

externalStage ::= @<external_stage_name>[/<path>]

externalLocation ::=
/* Amazon S3-like Storage */
's3://<bucket>[/<path>]'
CONNECTION = (
[ ENDPOINT_URL = '<endpoint-url>' ]
[ ACCESS_KEY_ID = '<your-access-key-ID>' ]
[ SECRET_ACCESS_KEY = '<your-secret-access-key>' ]
[ ENABLE_VIRTUAL_HOST_STYLE = TRUE | FALSE ]
[ MASTER_KEY = '<your-master-key>' ]
[ REGION = '<region>' ]
[ SECURITY_TOKEN = '<security-token>' ]
[ ROLE_ARN = '<role-arn>' ]
[ EXTERNAL_ID = '<external-id>' ]
)

/* Azure Blob Storage */
| 'azblob://<container>[/<path>]'
CONNECTION = (
ENDPOINT_URL = '<endpoint-url>'
ACCOUNT_NAME = '<account-name>'
ACCOUNT_KEY = '<account-key>'
)

/* Google Cloud Storage */
| 'gcs://<bucket>[/<path>]'
CONNECTION = (
CREDENTIAL = '<your-base64-encoded-credential>'
)

/* Alibaba Cloud OSS */
| 'oss://<bucket>[/<path>]'
CONNECTION = (
ACCESS_KEY_ID = '<your-ak>'
ACCESS_KEY_SECRET = '<your-sk>'
ENDPOINT_URL = '<endpoint-url>'
[ PRESIGN_ENDPOINT_URL = '<presign-endpoint-url>' ]
)

/* Tencent Cloud Object Storage */
| 'cos://<bucket>[/<path>]'
CONNECTION = (
SECRET_ID = '<your-secret-id>'
SECRET_KEY = '<your-secret-key>'
ENDPOINT_URL = '<endpoint-url>'
)

/* Remote Files */
| 'https://<url>'

/* IPFS */
| 'ipfs://<your-ipfs-hash>'
CONNECTION = (ENDPOINT_URL = 'https://<your-ipfs-gateway>')

/* Hugging Face */
| 'hf://<repo-id>[/<path>]'
CONNECTION = (
[ REPO_TYPE = 'dataset' | 'model' ]
[ REVISION = '<revision>' ]
[ TOKEN = '<your-api-token>' ]
)

formatTypeOptions ::=
/* Common options for all formats */
[ COMPRESSION = AUTO | GZIP | BZ2 | BROTLI | ZSTD | DEFLATE | RAW_DEFLATE | XZ | NONE ]

/* CSV specific options */
[ RECORD_DELIMITER = '<character>' ]
[ FIELD_DELIMITER = '<character>' ]
[ SKIP_HEADER = <integer> ]
[ QUOTE = '<character>' ]
[ ESCAPE = '<character>' ]
[ NAN_DISPLAY = '<string>' ]
[ NULL_DISPLAY = '<string>' ]
[ ERROR_ON_COLUMN_COUNT_MISMATCH = TRUE | FALSE ]
[ EMPTY_FIELD_AS = null | string | field_default ]
[ BINARY_FORMAT = HEX | BASE64 ]

/* TSV specific options */
[ RECORD_DELIMITER = '<character>' ]
[ FIELD_DELIMITER = '<character>' ]

/* NDJSON specific options */
[ NULL_FIELD_AS = NULL | FIELD_DEFAULT ]
[ MISSING_FIELD_AS = ERROR | NULL | FIELD_DEFAULT ]
[ ALLOW_DUPLICATE_KEYS = TRUE | FALSE ]

/* PARQUET specific options */
[ MISSING_FIELD_AS = ERROR | FIELD_DEFAULT ]

/* ORC specific options */
[ MISSING_FIELD_AS = ERROR | FIELD_DEFAULT ]

/* AVRO specific options */
[ MISSING_FIELD_AS = ERROR | FIELD_DEFAULT ]

copyOptions ::=
[ SIZE_LIMIT = <num> ]
[ PURGE = <bool> ]
[ FORCE = <bool> ]
[ DISABLE_VARIANT_CHECK = <bool> ]
[ ON_ERROR = { continue | abort | abort_N } ]
[ MAX_FILES = <num> ]
[ RETURN_FAILED_ONLY = <bool> ]
[ COLUMN_MATCH_MODE = { case-sensitive | case-insensitive } ]

备注

对于远程文件,您可以使用 glob 模式来指定多个文件。例如:

  • ontime_200{6,7,8}.csv 表示 ontime_2006.csvontime_2007.csvontime_2008.csv
  • ontime_200[6-8].csv 表示相同的文件

关键参数

  • FILES: 指定要加载的一个或多个文件名(以逗号分隔)。

  • PATTERN: 一个基于 PCRE2 的正则表达式模式字符串,用于指定要匹配的文件名。请参阅 示例 4:使用 Pattern 过滤文件

Format Type Options

FILE_FORMAT 参数支持不同的文件类型,每种类型都有特定的格式化选项。以下是每种支持的文件格式的可用选项:

所有格式的通用选项

OptionDescriptionValuesDefault
COMPRESSION数据文件的压缩算法AUTO, GZIP, BZ2, BROTLI, ZSTD, DEFLATE, RAW_DEFLATE, XZ, NONEAUTO

TYPE = CSV

OptionDescriptionDefault
RECORD_DELIMITER分隔记录的字符newline
FIELD_DELIMITER分隔字段的字符逗号 (,)
SKIP_HEADER要跳过的标题行数0
QUOTE用于引用字段的字符双引号 (")
ESCAPE用于封闭字段的转义字符NONE
NAN_DISPLAY表示 NaN 值的字符串NaN
NULL_DISPLAY表示 NULL 值的字符串\N
ERROR_ON_COLUMN_COUNT_MISMATCH如果列计数不匹配则报错TRUE
EMPTY_FIELD_AS如何处理空字段null
BINARY_FORMAT二进制数据的编码格式HEX

TYPE = TSV

OptionDescriptionDefault
RECORD_DELIMITER分隔记录的字符newline
FIELD_DELIMITER分隔字段的字符tab (\t)

TYPE = NDJSON

OptionDescriptionDefault
NULL_FIELD_AS如何处理 null 字段NULL
MISSING_FIELD_AS如何处理缺失字段ERROR
ALLOW_DUPLICATE_KEYS允许重复的对象键FALSE

TYPE = PARQUET

OptionDescriptionDefault
MISSING_FIELD_AS如何处理缺失字段ERROR

TYPE = ORC

OptionDescriptionDefault
MISSING_FIELD_AS如何处理缺失字段ERROR

TYPE = AVRO

OptionDescriptionDefault
MISSING_FIELD_AS如何处理缺失字段ERROR

Copy Options

ParameterDescriptionDefault
SIZE_LIMIT要加载的最大数据行数0 (无限制)
PURGE成功加载后清除文件false
FORCE允许重新加载重复文件false (跳过重复文件)
DISABLE_VARIANT_CHECK用 null 替换无效的 JSONfalse (在无效的 JSON 上失败)
ON_ERROR如何处理错误:continueabortabort_Nabort
MAX_FILES要加载的最大文件数(最多 15,000 个)-
RETURN_FAILED_ONLY仅在输出中返回失败的文件false
COLUMN_MATCH_MODE对于 Parquet:列名匹配模式case-insensitive
提示

当导入大量数据(如日志)时,将 PURGEFORCE 都设置为 true,以实现高效的数据导入,而无需与 Meta server 交互。请注意,这可能会导致重复的数据导入。

提示

当导入大量数据(例如日志)时,建议将 PURGEFORCE 都设置为 true。这可确保高效的数据导入,而无需与 Meta server 交互(更新 copied-files 集)。但是,重要的是要注意,这可能会导致重复的数据导入。

输出

COPY INTO 提供了数据加载结果的摘要,包含以下列:

ColumnTypeNullableDescription
FILEVARCHARNO源文件的相对路径。
ROWS_LOADEDINTNO从源文件加载的行数。
ERRORS_SEENINTNO源文件中的错误行数
FIRST_ERRORVARCHARYES在源文件中找到的第一个错误。
FIRST_ERROR_LINEINTYES第一个错误的行号。

如果 RETURN_FAILED_ONLY 设置为 true,则输出将仅包含加载失败的文件。

示例

示例 1:从 Stages 加载

这些示例展示了从各种类型的 stages 将数据加载到 Databend 中:

COPY INTO mytable
FROM @~
PATTERN = '.*[.]parquet'
FILE_FORMAT = (TYPE = PARQUET);

示例 2:从外部位置加载

这些示例展示了从各种类型的外部源将数据加载到 Databend 中:

此示例使用 AWS 访问密钥和密钥建立与 Amazon S3 的连接,并从 CSV 文件加载 10 行:

-- Authenticated by AWS access keys and secrets.
COPY INTO mytable
FROM 's3://mybucket/data.csv'
CONNECTION = (
ACCESS_KEY_ID = '<your-access-key-ID>',
SECRET_ACCESS_KEY = '<your-secret-access-key>'
)
FILE_FORMAT = (
TYPE = CSV,
FIELD_DELIMITER = ',',
RECORD_DELIMITER = '\n',
SKIP_HEADER = 1
)
SIZE_LIMIT = 10;

This example connects to Amazon S3 using AWS IAM role authentication with an external ID and loads CSV files matching the specified pattern from 'mybucket':

-- Authenticated by AWS IAM role and external ID.
COPY INTO mytable
FROM 's3://mybucket/'
CONNECTION = (
ENDPOINT_URL = 'https://<endpoint-URL>',
ROLE_ARN = 'arn:aws:iam::123456789012:role/my_iam_role',
EXTERNAL_ID = '123456'
)
PATTERN = '.*[.]csv'
FILE_FORMAT = (
TYPE = CSV,
FIELD_DELIMITER = ',',
RECORD_DELIMITER = '\n',
SKIP_HEADER = 1
);

Example 3: Loading Compressed Data

This example loads a GZIP-compressed CSV file on Amazon S3 into Databend:

COPY INTO mytable
FROM 's3://mybucket/data.csv.gz'
CONNECTION = (
ENDPOINT_URL = 'https://<endpoint-URL>',
ACCESS_KEY_ID = '<your-access-key-ID>',
SECRET_ACCESS_KEY = '<your-secret-access-key>'
)
FILE_FORMAT = (
TYPE = CSV,
FIELD_DELIMITER = ',',
RECORD_DELIMITER = '\n',
SKIP_HEADER = 1,
COMPRESSION = AUTO
);

Example 4: Filtering Files with Pattern

This example demonstrates how to load CSV files from Amazon S3 using pattern matching with the PATTERN parameter. It filters files with 'sales' in their names and '.csv' extensions:

COPY INTO mytable
FROM 's3://mybucket/'
PATTERN = '.*sales.*[.]csv'
FILE_FORMAT = (
TYPE = CSV,
FIELD_DELIMITER = ',',
RECORD_DELIMITER = '\n',
SKIP_HEADER = 1
);

Where .* is interpreted as zero or more occurrences of any character. The square brackets escape the period character . that precedes a file extension.

To load from all the CSV files:

COPY INTO mytable
FROM 's3://mybucket/'
PATTERN = '.*[.]csv'
FILE_FORMAT = (
TYPE = CSV,
FIELD_DELIMITER = ',',
RECORD_DELIMITER = '\n',
SKIP_HEADER = 1
);

When specifying the pattern for a file path including multiple folders, consider your matching criteria:

  • If you want to match a specific subpath following a prefix, include the prefix in the pattern (e.g., 'multi_page/') and then specify the pattern you want to match within that subpath (e.g., '_page_1').
-- File path: parquet/multi_page/multi_page_1.parquet
COPY INTO ... FROM @data/parquet/ PATTERN = 'multi_page/.*_page_1.*') ...
  • If you want to match any part of the file path that contains the desired pattern, use '.*' before and after the pattern (e.g., '.*multi_page_1.*') to match any occurrences of 'multi_page_1' within the path.
-- File path: parquet/multi_page/multi_page_1.parquet
COPY INTO ... FROM @data/parquet/ PATTERN ='.*multi_page_1.*') ...

Example 5: Loading to Table with Extra Columns

This section demonstrates data loading into a table with extra columns, using the sample file books.csv:

books.csv
Transaction Processing,Jim Gray,1992
Readings in Database Systems,Michael Stonebraker,2004

Alt text

By default, COPY INTO loads data into a table by matching the order of fields in the file to the corresponding columns in the table. It's essential to ensure that the data aligns correctly between the file and the table. For example,

CREATE TABLE books
(
title VARCHAR,
author VARCHAR,
date VARCHAR
);

COPY INTO books
FROM 'https://datafuse-1253727613.cos.ap-hongkong.myqcloud.com/data/books.csv'
FILE_FORMAT = (TYPE = CSV);

If your table has more columns than the file, you can specify the columns into which you want to load data. For example,

CREATE TABLE books_with_language
(
title VARCHAR,
language VARCHAR,
author VARCHAR,
date VARCHAR
);

COPY INTO books_with_language (title, author, date)
FROM 'https://datafuse-1253727613.cos.ap-hongkong.myqcloud.com/data/books.csv'
FILE_FORMAT = (TYPE = CSV);

If your table has more columns than the file, and the additional columns are at the end of the table, you can load data using the FILE_FORMAT option ERROR_ON_COLUMN_COUNT_MISMATCH. This allows you to load data without specifying each column individually. Please note that ERROR_ON_COLUMN_COUNT_MISMATCH currently works for the CSV file format.

CREATE TABLE books_with_extra_columns
(
title VARCHAR,
author VARCHAR,
date VARCHAR,
language VARCHAR,
region VARCHAR
);

COPY INTO books_with_extra_columns
FROM 'https://datafuse-1253727613.cos.ap-hongkong.myqcloud.com/data/books.csv'
FILE_FORMAT = (TYPE = CSV, ERROR_ON_COLUMN_COUNT_MISMATCH = false);
备注

Extra columns in a table can have default values specified by CREATE TABLE or ALTER TABLE COLUMN. If a default value is not explicitly set for an extra column, the default value associated with its data type will be applied. For instance, an integer-type column will default to 0 if no other value is specified.

Example 6: Loading JSON with Custom Format

This example loads data from a CSV file "data.csv" with the following content:

1,"U00010","{\"carPriceList\":[{\"carTypeId":10,\"distance":5860},{\"carTypeId":11,\"distance\":5861}]}"
2,"U00011","{\"carPriceList\":[{\"carTypeId":12,\"distance":5862},{\"carTypeId":13,\"distance\":5863}]}"

Each line contains three columns of data, with the third column being a string containing JSON data. To load CSV data correctly with JSON fields, we need to set the correct escape character. This example uses the backslash \ as the escape character, as the JSON data contains double quotes ".

Step 1: Create custom file format.

-- Define a custom CSV file format with the escape character set to backslash \
CREATE FILE FORMAT my_csv_format
TYPE = CSV
ESCAPE = '\\';

Step 2: Create target table.

CREATE TABLE t
(
id INT,
seq VARCHAR,
p_detail VARCHAR
);

Step 3: Load with custom file format.

COPY INTO t FROM @t_stage FILES=('data.csv')
FILE_FORMAT=(FORMAT_NAME='my_csv_format');

Example 7: Loading Invalid JSON

When loading data into a Variant column, Databend automatically checks the data's validity and throws an error in case of any invalid data. For example, if you have a Parquet file named invalid_json_string.parquet in the user stage that contains invalid JSON data, like this:

SELECT *
FROM @~/invalid_json_string.parquet;

┌────────────────────────────────────┐
│ a │ b │
├─────────────────┼──────────────────┤
5 │ {"k":"v"} │
6[1,
└────────────────────────────────────┘

DESC t2;

┌──────────────────────────────────────────────┐
│ Field │ TypeNullDefault │ Extra │
├────────┼─────────┼────────┼─────────┼────────┤
│ a │ VARCHAR │ YES │ NULL │ │
│ b │ VARIANT │ YES │ NULL │ │
└──────────────────────────────────────────────┘

An error would occur when attempting to load the data into a table:

root@localhost:8000/default>  COPY INTO t2 FROM @~/invalid_json_string.parquet FILE_FORMAT = (TYPE = PARQUET) ON_ERROR = CONTINUE;
error: APIError: ResponseError with 1006: EOF while parsing a value, pos 3 while evaluating function `parse_json('[1,')`

To load without checking the JSON validity, set the option DISABLE_VARIANT_CHECK to true in the COPY INTO statement:

COPY INTO t2 FROM @~/invalid_json_string.parquet
FILE_FORMAT = (TYPE = PARQUET)
DISABLE_VARIANT_CHECK = true
ON_ERROR = CONTINUE;

┌───────────────────────────────────────────────────────────────────────────────────────────────┐
File │ Rows_loaded │ Errors_seen │ First_error │ First_error_line │
├─────────────────────────────┼─────────────┼─────────────┼──────────────────┼──────────────────┤
│ invalid_json_string.parquet │ 20NULLNULL
└───────────────────────────────────────────────────────────────────────────────────────────────┘

SELECT * FROM t2;
-- Invalid JSON is stored as null in the Variant column.
┌──────────────────────────────────────┐
│ a │ b │
├──────────────────┼───────────────────┤
5 │ {"k":"v"} │
6null
└──────────────────────────────────────┘