跳到主要内容

ANALYZE TABLE

计算表的各种统计信息。该命令在执行后不会显示结果。要显示结果,请使用函数 FUSE_STATISTIC

Databend 将每个表的统计信息保存为一个以 UUID(32 位小写十六进制字符串)命名的 JSON 文件,并将这些文件存储在对象存储中的路径 <bucket_name>/[root]/<db_id>/<table_id>/ 下。

语法

ANALYZE TABLE [ <database_name>. ]<table_name>
  • 该命令不会通过比较值来识别不同的值,而是通过计算存储段和块的数量来识别。这可能导致估计结果与实际值之间存在显著差异,例如,多个块持有相同的值。在这种情况下,Databend 建议在运行估计之前压缩存储段和块,尽可能合并它们。
  • 在执行更新/删除/替换语句后,快照级别的列统计信息可能会被放大。您可以通过执行 analyze 语句来校正列统计信息。

示例

此示例估计表中每列的不同值的数量,并使用函数 FUSE_STATISTIC 显示结果:

CREATE TABLE sample (
user_id INT,
name VARCHAR(50),
age INT
);

INSERT INTO sample (user_id, name, age) VALUES
(1, 'Alice', 30),
(2, 'Bob', 25),
(3, 'Charlie', 35),
(4, 'Diana', 28),
(5, 'Eve', 28);

SET enable_analyze_histogram = 1;

-- 在运行 ANALYZE TABLE 进行估计之前,FUSE_STATISTIC 不会返回任何结果。
SELECT * FROM FUSE_STATISTIC('default', 'sample');

ANALYZE TABLE sample;

SELECT * FROM FUSE_STATISTIC('default', 'sample');

┌─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
│ column_name │ distinct_count │ histogram │
├─────────────┼────────────────┼──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ age │ 4[bucket id: 0, min: "25", max: "25", ndv: 1.0, count: 1.0], [bucket id: 1, min: "28", max: "28", ndv: 1.0, count: 1.0], [bucket id: 2, min: "28", max: "28", ndv: 1.0, count: 1.0], [bucket id: 3, min: "30", max: "30", ndv: 1.0, count: 1.0], [bucket id: 4, min: "35", max: "35", ndv: 1.0, count: 1.0]
│ user_id │ 5[bucket id: 0, min: "1", max: "1", ndv: 1.0, count: 1.0], [bucket id: 1, min: "2", max: "2", ndv: 1.0, count: 1.0], [bucket id: 2, min: "3", max: "3", ndv: 1.0, count: 1.0], [bucket id: 3, min: "4", max: "4", ndv: 1.0, count: 1.0], [bucket id: 4, min: "5", max: "5", ndv: 1.0, count: 1.0]
│ name │ 5[bucket id: 0, min: "Alice", max: "Alice", ndv: 1.0, count: 1.0], [bucket id: 1, min: "Bob", max: "Bob", ndv: 1.0, count: 1.0], [bucket id: 2, min: "Charlie", max: "Charlie", ndv: 1.0, count: 1.0], [bucket id: 3, min: "Diana", max: "Diana", ndv: 1.0, count: 1.0], [bucket id: 4, min: "Eve", max: "Eve", ndv: 1.0, count: 1.0]
└─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘

INSERT INTO sample (user_id, name, age) VALUES
(6, 'Frank', 40);

-- FUSE_STATISTIC 返回您上次估计的结果。要获取最新的估计值,请再次运行 ANALYZE TABLE。
SELECT * FROM FUSE_STATISTIC('default', 'sample');

┌─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
│ column_name │ distinct_count │ histogram │
├─────────────┼────────────────┼──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ age │ 4[bucket id: 0, min: "25", max: "25", ndv: 1.0, count: 1.0], [bucket id: 1, min: "28", max: "28", ndv: 1.0, count: 1.0], [bucket id: 2, min: "28", max: "28", ndv: 1.0, count: 1.0], [bucket id: 3, min: "30", max: "30", ndv: 1.0, count: 1.0], [bucket id: 4, min: "35", max: "35", ndv: 1.0, count: 1.0]
│ user_id │ 5[bucket id: 0, min: "1", max: "1", ndv: 1.0, count: 1.0], [bucket id: 1, min: "2", max: "2", ndv: 1.0, count: 1.0], [bucket id: 2, min: "3", max: "3", ndv: 1.0, count: 1.0], [bucket id: 3, min: "4", max: "4", ndv: 1.0, count: 1.0], [bucket id: 4, min: "5", max: "5", ndv: 1.0, count: 1.0]
│ name │ 5[bucket id: 0, min: "Alice", max: "Alice", ndv: 1.0, count: 1.0], [bucket id: 1, min: "Bob", max: "Bob", ndv: 1.0, count: 1.0], [bucket id: 2, min: "Charlie", max: "Charlie", ndv: 1.0, count: 1.0], [bucket id: 3, min: "Diana", max: "Diana", ndv: 1.0, count: 1.0], [bucket id: 4, min: "Eve", max: "Eve", ndv: 1.0, count: 1.0]
└─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘

ANALYZE TABLE sample;

SELECT * FROM FUSE_STATISTIC('default', 'sample');

┌───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐ │ 列名 │ 不同值数量 | 直方图 │ ├─────────────┼────────────────┼────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤ │ name │ 6 │ [bucket id: 0, min: "Alice", max: "Alice", ndv: 1.0, count: 1.0], [bucket id: 1, min: "Bob", max: "Bob", ndv: 1.0, count: 1.0], [bucket id: 2, min: "Charlie", max: "Charlie", ndv: 1.0, count: 1.0], [bucket id: 3, min: "Diana", max: "Diana", ndv: 1.0, count: 1.0], [bucket id: 4, min: "Eve", max: "Eve", ndv: 1.0, count: 1.0], [bucket id: 5, min: "Frank", max: "Frank", ndv: 1.0, count: 1.0] │ │ age │ 5 │ [bucket id: 0, min: "25", max: "25", ndv: 1.0, count: 1.0], [bucket id: 1, min: "28", max: "28", ndv: 1.0, count: 1.0], [bucket id: 2, min: "28", max: "28", ndv: 1.0, count: 1.0], [bucket id: 3, min: "30", max: "30", ndv: 1.0, count: 1.0], [bucket id: 4, min: "35", max: "35", ndv: 1.0, count: 1.0], [bucket id: 5, min: "40", max: "40", ndv: 1.0, count: 1.0] │ │ user_id │ 6 │ [bucket id: 0, min: "1", max: "1", ndv: 1.0, count: 1.0], [bucket id: 1, min: "2", max: "2", ndv: 1.0, count: 1.0], [bucket id: 2, min: "3", max: "3", ndv: 1.0, count: 1.0], [bucket id: 3, min: "4", max: "4", ndv: 1.0, count: 1.0], [bucket id: 4, min: "5", max: "5", ndv: 1.0, count: 1.0], [bucket id: 5, min: "6", max: "6", ndv: 1.0, count: 1.0] │ └───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘

开始使用 Databend Cloud
低成本
快速分析
多种数据源
弹性扩展
注册

Copyright © 2025 The Databend Community. Apache, Apache OpenDAL and OpenDAL are either registered trademarks or trademarks of the Apache Software Foundation.

We use cookies on our site to provide you with better user experience. You can view our Cookies Policy in Privacy Policy .